Part Number Hot Search : 
39100 8C424 TA1814A 2SK18 P0618 1100T N80C196 CJ7809F
Product Description
Full Text Search
 

To Download MC100EP446NBSP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MC10EP446, MC100EP446 3.3V/5V 8-Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
The MC10/100EP446 is an integrated 8-bit parallel to serial data converter. The device is designed with unique circuit topology to operate for NRZ data rates up to 3.2 Gb/s. The conversion sequence from parallel data into a serial data stream is from bit D0 to D7. The parallel input pins D0-D7 are configurable to be threshold controlled by CMOS, ECL, or TTL level signals. The serial data rate output can be selected at internal clock data rate or twice the internal clock data rate using the CKSEL pin. Control pins are provided to reset (SYNC) and disable internal clock circuitry (CKEN). In either CKSEL modes, the internal flip-flops are triggered on the rising edge for CLK and the multiplexers are switched on the falling edge of CLK, therefore, all associated specification limits are referenced to the negative edge of the clock input. Additionally, VBB pin is provided for single-ended input condition. The 100 Series devices contain temperature compensation network.
http://onsemi.com
MARKING DIAGRAM*
MCXXX EP446 AWLYYWW LQFP-32 FA SUFFIX CASE 873A 32 1 XXX A WL YY WW = 10 or 100 = Assembly Location = Wafer Lot = Year = Work Week
* * * * * *
3.2 Gb/s Typical Data Rate Capability Differential Clock and Serial Outputs VBB Output for Single-ended Input Applications Asynchronous Data Reset (SYNC) PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = -3.0 V to -5.5 V Open Input Default State
*For additional marking information, refer to Application Note AND8002/D.
* * Safety Clamp on Inputs * Parallel Interface Can Support PECL, TTL or CMOS
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet.
(c) Semiconductor Components Industries, LLC, 2004
1
June, 2004 - Rev. 5
Publication Order Number: MC10EP446/D
MC10EP446, MC100EP446
D0 D1 D2 D3 D4 D5 D6 18 D7 17 16 15 14 VEE PCLK PCLK VCC SOUT SOUT VCC VCC 13 12 11 10 9 1 2 3 4 5 6 7 8 FUNCTION ECL, CMOS, or TTL Parallel Data Input ECL Differential Serial Data Output ECL Differential Clock Input ECL Differential Parallel Clock Output ECL Conversion Synchronizing Differential Input (Reset)*** ECL Clock Input Selector ECL Clock Enable Differential Input ECL, CMOS, or TTL Input Selector ECL Reference Mode Connection Reference Voltage Output Positive Supply Negative Supply VEE
24 VCC VCF VEF VEE SYNC SYNC VBB2 VCC 25 26 27 28 29 30 31 32
23
22
21
20
19
MC10EP446 MC100EP446
CKEN
CKSEL
Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation.
Figure 1. LQFP-32 Pinout (Top View)
Table 1. PIN DESCRIPTION
PIN D0*-D7* SOUT, SOUT CLK*, CLK* PCLK, PCLK SYNC*, SYNC** CKSEL* CKEN*, CKEN* VCF VEF VBB1, VBB2 VCC VEE
* Pins will default LOW when left open. **Pins will default HIGH when left open. ***The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK initiates the conversion process synchronously on the next rising edge of CLK.
http://onsemi.com
2
CKEN
VCC
CLK
CLK
VBB1
MC10EP446, MC100EP446
Table 2. TRUTH TABLE
Function Pin CKSEL SOUT: PCLK = 8:1 CLK: SOUT = 1:1 CLK SOUT CKEN SYNC Synchronously Disables Normal Parallel to Serial Conversion Asynchronously Resets Internal Flip-Flops* HIGH SOUT: PCLK = 8:1 CLK: SOUT = 1:2 CLK SOUT Synchronously Enables Normal Parallel to Serial Conversion Synchronous Enable LOW
*The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK initiates the conversion process synchronously on the next rising edge of CLK.
Table 3. INPUT VOLTAGE LEVEL SELECTION TABLE
Input Function ECL Mode CMOS Mode TTL Mode* Connect To VCF Pin VEF Pin No Connect 1.5 V $ 100 mV
Table 4. DATA INPUT OPERATING VOLTAGE TABLE
Power Supply (VCC,VEE) PECL NECL Data Inputs (D [0:7]) CMOS p N/A TTL p N/A PECL p N/A NECL N/A p
*For TTL Mode, if no external voltage can be provided, the reference voltage can be provided by connecting the appropriate resistor between VCF and VEE pins.
Power Supply 3.3 V 5.0 V
Resistor Value 10% (Tolerance) 1.5 kW 500 W
http://onsemi.com
3
MC10EP446, MC100EP446
D0 D CR Q MUX 2:1 Q MUX 2:1 Q MUX 2:1 Q MUX 2:1 Q MUX 2:1 Q MUX 2:1 Q MUX 2:1 Q D CR D7 D CR Q D CR D3 D CR Q SOUT SOUT D CR D6 D CR Q D CR D4 D CR Q
D CR
Q
D2
D CR
D1
D CR
D CR
Q
D5
D CR
/2
/2
/2 CKEN CKEN CLK CLK D Q
MUX 2:1
Control Logic
PCLK PCLK
CR
CKSEL SYNC SYNC VCC VEE VBB VCF VEF
Figure 2. Logic Diagram
http://onsemi.com
4
MC10EP446, MC100EP446
Table 5. ATTRIBUTES
Characteristics Internal Input Pulldown Resistor Internal Input Pullup Resistor ESD Protection Human Body Model Machine Model Charged Device Model Value 75 kW 37.5 kW > 2 kV > 100 V > 2 kV Level 2 Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in 962 Devices
Moisture Sensitivity (Note 1) Flammability Rating Transistor Count Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D.
Table 6. MAXIMUM RATINGS
Symbol VCC VEE VI Iout IBB TA Tstg qJA qJC Tsol Parameter PECL Mode Power Supply NECL Mode Power Supply PECL Mode Input Voltage NECL Mode Input Voltage Output Current VBB Sink/Source Operating Temperature Range Storage Temperature Range Thermal Resistance (Junction-to-Ambient) Thermal Resistance (Junction-to-Case) Wave Solder 0 lfpm 500 lfpm Standard Board < 2 to 3 sec @ 248C LQFP-32 LQFP-32 LQFP-32 Condition 1 VEE = 0 V VCC = 0 V VEE = 0 V VCC = 0 V Continuous Surge VI VCC VI VEE Condition 2 Rating 6 -6 6 -6 50 100 0.5 -40 to +85 -65 to +150 80 55 12 to 17 265 Unit V V V V mA mA mA C C C/W C/W C/W C
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.
http://onsemi.com
5
MC10EP446, MC100EP446
Table 7. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 2)
-40C Symbol IEE VOH VOL VIH Characteristic Power Supply Current Output HIGH Voltage (Note 3) Output LOW Voltage (Note 3) Input HIGH Voltage (Single-Ended) CMOS PECL TTL Input LOW Voltage (Single-Ended) CMOS PECL TTL Output Voltage Reference Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4) Input HIGH Current Input LOW Current 0.5 Min 90 2165 1365 2000 2090 2000 0 1365 0 1740 2.0 1840 Typ 110 2290 1490 Max 130 2415 1615 3300 3300 3300 800 1690 800 1940 3.3 150 0.5 Min 90 2230 1430 2000 2155 2000 0 1460 0 1805 2.0 1905 25C Typ 110 2355 1555 Max 130 2480 1680 3300 3300 3300 800 1755 800 2005 3.3 150 0.5 Min 95 2290 1490 2000 2215 2000 0 1490 0 1865 2.0 1965 85C Typ 115 2415 1615 Max 135 2540 1740 3300 3300 3300 800 1815 800 2065 3.3 150 Unit mA mV mV mV
VIL
mV
VBB VIHCMR IIH IIL
mV V mA mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 2. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 3. All loading with 50 W to VCC - 2.0 V. 4. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
Table 8. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 5)
-40C Symbol IEE VOH VOL VIH Characteristic Power Supply Current Output HIGH Voltage (Note 6) Output LOW Voltage (Note 6) Input HIGH Voltage (Single-Ended) CMOS PECL TTL Input LOW Voltage (Single-Ended) CMOS PECL TTL Output Voltage Reference Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 7) Input HIGH Current Input LOW Current 0.5 Min 90 3865 3065 3500 3790 2000 0 3065 0 3440 2.0 3540 Typ 110 3950 3190 Max 130 4115 3315 5000 5000 5000 1500 3390 800 3640 5.0 150 0.5 Min 90 3930 3130 3500 3855 2000 0 3130 0 3505 2.0 3605 25C Typ 110 4055 3255 Max 130 4180 3380 5000 5000 5000 1500 3455 800 3705 5.0 150 0.5 Min 95 3990 3190 3500 3915 2000 0 3190 0 3565 2.0 3665 85C Typ 115 4115 3315 Max 135 4240 3440 5000 5000 5000 1500 3915 800 3765 5.0 150 Unit mA mV mV mV
VIL
mV
VBB VIHCMR IIH IIL
mV V mA mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 5. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 6. All loading with 50 W to VCC - 2.0 V. 7. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
http://onsemi.com
6
MC10EP446, MC100EP446
Table 9. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 8)
-40C Symbol IEE VOH VOL VIH VIL VBB VIHCMR Characteristic Power Supply Current Output HIGH Voltage (Note 9) Output LOW Voltage (Note 9) Input HIGH Voltage (Single-Ended) Input LOW Voltage (Single-Ended) Output Voltage Reference Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10) Input HIGH Current Input LOW Current 0.5 Min 90 -1135 -1935 -1210 -1935 -1560 -1460 Typ 110 -1010 -1810 Max 130 -885 -1685 -885 -1610 -1360 0.0 Min 90 -1070 -1870 -1145 -1870 -1495 -1395 25C Typ 110 -945 -1745 Max 130 -820 -1620 -820 -1545 -1295 0.0 Min 95 -1010 -1810 -1085 -1810 -1435 -1335 85C Typ 115 -885 -1685 Max 135 -760 -1560 -760 -1485 -1235 0.0 Unit mA mV mV mV mV mV V
VEE+2.0
VEE+2.0
VEE+2.0
IIH IIL
150 0.5
150 0.5
150
mA mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 8. Input and output parameters vary 1:1 with VCC. 9. All loading with 50 W to VCC - 2.0 V. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
Table 10. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 11)
-40C Symbol IEE VOH VOL VIH Characteristic Power Supply Current Output HIGH Voltage (Note 12) Output LOW Voltage (Note 12) Input HIGH Voltage (Single-Ended) CMOS PECL TTL Input LOW Voltage (Single-Ended) CMOS PECL TTL Output Voltage Reference Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13) Input HIGH Current Input LOW Current 0.5 Min 90 2155 1355 2000 2075 2000 0 1355 0 1775 2.0 1875 Typ 110 2280 1480 Max 130 2405 1605 3300 3300 3300 800 1675 800 1975 3.3 Min 90 2155 1355 2000 2075 2000 0 1355 0 1775 2.0 1875 25C Typ 110 2280 1480 Max 130 2405 1605 3300 3300 3300 800 1675 800 1975 3.3 Min 95 2155 1355 2000 2075 2000 0 1355 0 1775 2.0 1875 85C Typ 115 2280 1480 Max 135 2405 1605 3300 3300 3300 800 1675 800 1975 3.3 Unit mA mV mV mV
VIL
mV
VBB VIHCMR
mV V
IIH IIL
150 0.5
150 0.5
150
mA mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 11. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 12. All loading with 50 W to VCC - 2.0 V. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
http://onsemi.com
7
MC10EP446, MC100EP446
Table 11. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 14)
-40C Symbol IEE VOH VOL VIH Characteristic Power Supply Current Output HIGH Voltage (Note 15) Output LOW Voltage (Note 15) Input HIGH Voltage (Single-Ended) CMOS PECL TTL Input LOW Voltage (Single-Ended) CMOS PECL TTL Output Voltage Reference Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 16) Input HIGH Current Input LOW Current 0.5 Min 90 3855 3055 3500 3775 2000 0 3055 0 3475 2.0 3575 Typ 110 3980 3180 Max 130 4105 3305 5000 5000 5000 1500 3375 800 3675 5.0 Min 90 3855 3055 3500 3775 2000 0 3055 0 3475 2.0 3575 25C Typ 110 3980 3180 Max 130 4105 3305 5000 5000 5000 1500 3375 800 3675 5.0 Min 95 3855 3055 3500 3775 2000 0 3055 0 3475 2.0 3575 85C Typ 115 3980 3180 Max 135 4105 3305 5000 5000 5000 1500 3375 800 3675 5.0 Unit mA mV mV mV
VIL
mV
VBB VIHCMR
mV V
IIH IIL
150 0.5
150 0.5
150
mA mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 14. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 15. All loading with 50 W to VCC - 2.0 V. 16. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
Table 12. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -5.5 V to -3.0 V (Note 17)
-40C Symbol IEE VOH VOL VIH VIL VBB VIHCMR Characteristic Power Supply Current Output HIGH Voltage (Note 18) Output LOW Voltage (Note 18) Input HIGH Voltage (Single-Ended) Input LOW Voltage (Single-Ended) Output Voltage Reference Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 19) Input HIGH Current Input LOW Current 0.5 Min 90 -1145 -1945 -1225 -1945 -1525 -1425 Typ 110 -1020 -1820 Max 130 -895 -1695 -880 -1625 -1325 0.0 Min 90 -1145 -1945 -1225 -1945 -1525 -1425 25C Typ 110 -1020 -1820 Max 130 -895 -1695 -880 -1625 -1325 0.0 Min 95 -1145 -1945 -1225 -1945 -1525 -1425 85C Typ 115 -1020 -1820 Max 135 -895 -1695 -880 -1625 -1325 0.0 Unit mA mV mV mV mV mV V
VEE+2.0
VEE+2.0
VEE+2.0
IIH IIL
150 0.5
150 0.5
150
mA mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 17. Input and output parameters vary 1:1 with VCC. 18. All loading with 50 W to VCC - 2.0 V. 19. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.
http://onsemi.com
8
MC10EP446, MC100EP446
Table 13. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 20)
-40C Symbol fmax Characteristic Maximum Frequency (Figure 14) CKSEL High CKSEL Low tPLH, tPHL Propagation Delay to Output Differential CKSEL = 0 CLK TO SOUT, CLK TO PCLK CKSEL = 1 tS Setup Time D to CLK+ SYNC- to CLK- CKEN+ to CLK- Hold Time D to CLK+ SYNC- to CLK- CLK- to CKEN- CLK TO SOUT, CLK TO PCLK (Figure 3) (Figure 4) (Figure 5) (Figure 3) (Figure 5) 3.2 1.6 650 700 775 850 -375 200 70 -525 0 75 150 200 145 0.2 150 SOUT 50 800 100 <1 1200 150 150 70 3.4 1.7 750 800 875 950 -425 140 40 -575 45 850 900 975 1050 3.2 1.6 700 750 825 900 -400 200 70 -550 0 75 150 200 145 0.2 800 120 <1 1200 170 150 90 3.4 1.7 800 850 925 1000 -450 140 40 -600 45 900 950 1025 1100 3.2 1.6 725 775 875 950 -450 200 70 -600 0 75 150 200 145 0.2 800 140 <1 1200 190 3.4 1.7 850 900 1000 1075 -500 140 40 -650 45 ps 975 1025 1125 1200 GHz Min Typ Max Min 25C Typ Max Min 85C Typ Max Unit
ps ps
ps
th
ps
tpw
Minimum Pulse Width (Note 22) Data (D0-D7) SYNC CKEN Random Clock Jitter (RMS) v fmax Typ Input Differential Voltage Swing (Note 21) Output Rise/Fall Times (20% - 80%)
tJITTER VPP tr tf
ps mV ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 20. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC - 2.0 V. 21. VPP(min) is the minimum input swing for which AC parameters are guaranteed. 22. The minimum pulse width is valid only if the setup and hold times are respected.
http://onsemi.com
9
MC10EP446, MC100EP446
CLK
Data Setup Time
Data Valid ts th +0-
Figure 3. Setup and Hold Time for Data
SYNC SYNC
CLK
ts CLK CKEN CLK tS th
Figure 4. Setup Time for SYNC
Figure 5. Setup and Hold Time for CKEN
http://onsemi.com
10
MC10EP446, MC100EP446
APPLICATION INFORMATION The MC10/100EP446 is an integrated 8:1 parallel to serial converter. An attribute for EP446 is that the parallel inputs D0-D7 (Pins 17 - 24) can be configured to accept either CMOS, ECL, or TTL level signals by a combination of interconnects between VEF (Pin 27) and VCF (Pin 26) pins. For CMOS input levels, leave VEF and VCF open. For ECL operation, short VCF and VEF (Pins 26 and 27). For TTL operation, connect a 1.5 V supply reference to VCF and leave the VEF pin open. The 1.5 V reference voltage to VCF pin can be accomplished by placing a 1.5 kW or 500 W between VCF and VEE for 3.3 V or 5.0 V power supplies, respectively. Note: all pins requiring ECL voltage inputs must have a 50 W terminating resistor to VTT (VTT = VCC - 2.0 V). The CKSEL input (Pin 2) is provided to enable the user to select the serial data rate output between internal clock data rate or twice the internal clock data rate. For CKSEL LOW operation, the time from when the parallel data is latched to when the data is seen on the SOUT is on the falling edge of the 7th clock cycle plus internal propagation delay (Figure 6). Note the PCLK switches on the falling edge of CLK.
A
CLK D0 D1 D2 D3 D4 D5 D6 D7
Number of Clock Cycles from Data Latch to SOUT 1 2 3 4 5 6 7
D0-1 D1-1 D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 Data Latched
D0-2 D1-2 D2-2 D3-2 D4-2 D5-2 D6-2 D7-2 Data Latched D0-1
D0-3 D1-3 D2-3 D3-3 D4-3 D5-3 D6-3 D7-3 Data Latched D1-1 D2-1 D3-1 D4-1 D5-1 D6-1 D7-1
D0-4 D1-4 D2-4 D3-4 D4-4 D5-4 D6-4 D7-4 Data Latched D0-2 D1-2 D2-2 D3-2 D4-2 D5-2 D6-2
SOUT CKSEL PCLK
A
Figure 6. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW
http://onsemi.com
11
MC10EP446, MC100EP446
Similarly, for CKSEL HIGH operation, the time from when the parallel data is latched to when the data is seen on the SOUT is on the rising edge of the 14th clock cycle plus internal propagation delay (Figure 7). Furthermore, the PCLK switches on the rising edge of CLK. A
CLK D0 D1 D2 D3 D4 D5 D6 D7 Data Latched D0-1 D1-1 D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 Data Latched D0-1 D0-2 D1-2 D2-2 D3-2 D4-2 D5-2 D6-2 D7-2 Data Latched D1-1 D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 D0-2 D0-3 D1-3 D2-3 D3-3 D4-3 D5-3 D6-3 D7-3 Number of Clock Cycles from Data Latch to SOUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14
SOUT CKSEL PCLK
A
Figure 7. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH
http://onsemi.com
12
D1-2
MC10EP446, MC100EP446
The device also features a differential SYNC input (Pins 29 and 30), which asynchronously reset all internal flip-flops and clock circuitry on the rising edge of SYNC. The release of SYNC is a synchronous process, which ensures that no runt serial data bits are generated. The falling edge of the SYNC followed by a falling edge of CLK initiates the start of the conversion process on the next rising edge of CLK (Figures 8 and 9). As shown in the figures below, the device will start to latch the parallel input data after the a falling edge of SYNC , followed by the falling edge CLK , on the next rising of edge of CLK (R) for CKSEL LOW
SYNC (Synchronous ENABLE) Number of Clock Cycles from Data Latch to SOUT SYNC (Asynchronous RESET) CLK SYNC D0 D1 D2 D3 D4 D5 D6 D7 1 2 3 4 5 6 7
A A
A
D0-1 D1-1 D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 Data Latched
D0-2 D1-2 D2-2 D3-2 D4-2 D5-2 D6-2 D7-2 Data Latched D0-1 D1-1 D2-1 D3-1 D4-1
D0-3 D1-3 D2-3 D3-3 D4-3 D5-3 D6-3 D7-3 Data Latched D5-1 D6-1 D7-1 D0-2 D1-2 D2-2 D3-2
D0-4 D1-4 D2-4 D3-4 D4-4 D5-4 D6-4 D7-4 Data Latched D4-2 D5-2 D6-2
SOUT CKSEL PCLK
Figure 8. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW and SYNC
SYNC
A
A
CLK
A
Figure 9. Synchronous Release of SYNC for CKSEL LOW
http://onsemi.com
13
MC10EP446, MC100EP446
For CKSEL HIGH, as shown in the timing diagrams below, the device will start to latch the parallel input data after the falling edge of SYNC , followed by the falling edge CLK , on the second rising edge of CLK (R) (Figures 10 and 11).
SYNC (Synchronous ENABLE) Number of Clock Cycles from Data Latch to SOUT SYNC (Asynchronous RESET) CLK SYNC D0 D1 D2 D3 D4 D5 D6 D7 1 2 3 4 5 6 7 8 9 10 11 12 13 14
AA A
D0-1 D1-1 D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 Data Latched D0-2 D1-2 D2-2 D3-2 D4-2 D5-2 D6-2 D7-2 Data Latched D0-1 D0-3 D1-3 D2-3 D3-3 D4-3 D5-3 D6-3 D7-3 Data Latched D1-1 D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 D0-2 D1-2 D0-4 D1-4 D2-4 D3-4 D4-4 D5-4 D6-4 D7-4
SOUT CKSEL PCLK
Figure 10. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH and SYNC
SYNC
A
A CLK
A
Figure 11. Synchronous Release of SYNC for CKSEL HIGH
http://onsemi.com
14
MC10EP446, MC100EP446
The differential synchronous CKEN inputs (Pins 6 and 7), disable the internal clock circuitry. The synchronous CKEN will suspend all of the device activities and prevent runt pulses from being generated. The rising edge of CKEN followed by the falling edge of CLK will suspend all activities. The falling edge of CKEN followed by the falling edge of CLK will resume all activities (Figure 12).
Internal Clock Disabled Internal Clock Enabled
CLK
CKEN SOUT PCLK CKSEL D0-1 D1-1 D2-1 D3-1 D4-1 D5-1
Figure 12. Timing Diagram with CKEN with CKSEL HIGH
The differential PCLK output (Pins 14 and 15) is a word framer and can help the user synchronize the serial data output, SOUT (Pins 11 and 12), in their applications. Furthermore, PCLK can be used as a trigger for input parallel data (Figure 13). An internally generated voltage supply, the VBB pin, is available to this device only. For single-ended input
conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 mF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. Also, both outputs of the differential pair must be terminated (50 W to VTT) even if only one output is used.
CLK RESET
CLK Pattern Generator Data Format Logic (FPGA, ASIC) PARALLEL DATA OUTPUT PARALLEL DATA INPUT
SYNC EP446
SOUT
SERIAL DATA
TRIGGER
PCLK
Figure 13. PCLK as Trigger Application
http://onsemi.com
15
MC10EP446, MC100EP446
800 CKSEL High 700 CKSEL Low VOUTpp (mV) 600 500 400 300 200 100 0 0 500 1000 1500 2000 2500 3000 3500 INPUT CLOCK FREQUENCY (MHz)
Figure 14. Typical VOUTPP versus Input Clock Frequency, 255C
Figure 15. SOUT System Jitter Measurement (Condition: 3.4 GHz input frequency, CKSEL HIGH, BEOFE32 bit pattern on SOUT
http://onsemi.com
16
MC10EP446, MC100EP446
Zo = 50 W
Q Driver Device Q
D Receiver Device
Zo = 50 W 50 W 50 W
D
VTT VTT = VCC - 2.0 V
Figure 16. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)
ORDERING INFORMATION
Device MC10EP446FA MC10EP446FAR2 MC100EP446FA MC100EP446FAR2 Package LQFP-32 LQFP-32 LQFP-32 LQFP-32 Shipping 250 Units / Tray 2000 / Tape & Reel 250 Units / Tray 2000 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
http://onsemi.com
17
MC10EP446, MC100EP446
Resource Reference of Application Notes
AN1405/D AN1406/D AN1503/D AN1504/D AN1568/D AN1642/D AND8001/D AND8002/D AND8020/D AND8066/D AND8090/D - ECL Clock Distribution Techniques - Designing with PECL (ECL at +5.0 V) - ECLinPSt I/O SPiCE Modeling Kit - Metastability and the ECLinPS Family - Interfacing Between LVDS and ECL - The ECL Translator Guide - Odd Number Counters Design - Marking and Date Codes - Termination of ECL Logic Devices - Interfacing with ECLinPS - AC Characteristics of ECL Devices
http://onsemi.com
18
MC10EP446, MC100EP446
PACKAGE DIMENSIONS
LQFP FA SUFFIX 32-LEAD PLASTIC PACKAGE CASE 873A-02 ISSUE B
A
32
4X 25
A1
0.20 (0.008) AB T-U Z
1
-T- B B1
8
-U- V
AE P AE
17
V1
DETAIL Y
BASE METAL
9
-Z- 9 S1 S
F
D
8X
M_ R
J
G -AB-
SEATING PLANE
DETAIL AD CE
SECTION AE-AE
-AC- 0.10 (0.004) AC 0.250 (0.010) H W X DETAIL AD K Q_
GAUGE PLANE
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE -AB- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -T-, -U-, AND -Z- TO BE DETERMINED AT DATUM PLANE -AB-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -AC-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -AB-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020). 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION.
DIM A A1 B B1 C D E F G H J K M N P Q R S S1 V V1 W X
MILLIMETERS MIN MAX 7.000 BSC 3.500 BSC 7.000 BSC 3.500 BSC 1.400 1.600 0.300 0.450 1.350 1.450 0.300 0.400 0.800 BSC 0.050 0.150 0.090 0.200 0.500 0.700 12_ REF 0.090 0.160 0.400 BSC 1_ 5_ 0.150 0.250 9.000 BSC 4.500 BSC 9.000 BSC 4.500 BSC 0.200 REF 1.000 REF
INCHES MIN MAX 0.276 BSC 0.138 BSC 0.276 BSC 0.138 BSC 0.055 0.063 0.012 0.018 0.053 0.057 0.012 0.016 0.031 BSC 0.002 0.006 0.004 0.008 0.020 0.028 12_ REF 0.004 0.006 0.016 BSC 1_ 5_ 0.006 0.010 0.354 BSC 0.177 BSC 0.354 BSC 0.177 BSC 0.008 REF 0.039 REF
http://onsemi.com
19
0.20 (0.008)
0.20 (0.008) AC T-U Z
M
4X
EE EE EE EE
N
AC T-U Z
DETAIL Y
-T-, -U-, -Z-
MC10EP446, MC100EP446
ECLinPS is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.
http://onsemi.com
20
MC10EP446/D


▲Up To Search▲   

 
Price & Availability of MC100EP446NBSP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X